DIELECTRICS

40. DIELECTRICS

What are Dielectrics?

- Dielectrics are insulating materials that do not conduct electricity but can support an electrostatic field.
- When placed in an electric field, they polarize, meaning their positive and negative charges slightly separate, creating dipoles.

Important Points about Dielectrics:

- They increase the capacitance when used as an insulating material between capacitor plates.
- Dielectrics reduce the electric field inside them by aligning their dipoles opposite to the external field.
- Examples: Glass, rubber, plastic, mica.

41. TYPES OF POLARIZATION

Polarization in dielectrics means the **alignment or displacement of charges** under an electric field. There are mainly **four types** of polarization:

1. Electronic Polarization

- Caused by the displacement of electron clouds relative to the nucleus in atoms.
- Happens instantly when the electric field is applied.

2. Ionic Polarization

- Occurs in ionic crystals where positive and negative ions shift slightly in opposite directions under the electric field.
- Usually slower than electronic polarization.

3. Orientation (Dipolar) Polarization

- Happens in materials with permanent dipole moments (like water molecules).
- The dipoles **rotate to align** with the external field.
- Depends on temperature and frequency.

4. Space Charge (Interfacial) Polarization

- Caused by accumulation of charges at interfaces or defects inside the material.
- Occurs in heterogeneous materials or composites.
- Happens at low frequencies.

42. TYPES OF POLARIZATION IN DIELECTRICS

1. Electronic Polarization

• Happens when an external electric field displaces the

negatively charged electron cloud slightly away from the positively charged nucleus in an atom.

- Creates a tiny induced dipole in the atom.
- This polarization occurs instantly when the field is applied and disappears when removed.
- Present in all dielectric materials.

2. Ionic Polarization

- Occurs in ionic crystals (like NaCl), where positive and negative ions shift in opposite directions under an electric field.
- The shift creates dipoles at the atomic scale.
- It is slower than electronic polarization because ions are heavier and move less quickly.

3. Orientation (Dipolar) Polarization

- Happens in dielectrics with permanent dipole moments (e.g., water molecules).
- The dipoles rotate and try to align with the applied electric field.
- Requires thermal energy to overcome random molecular motion.
- Strongly depends on temperature and frequency of the applied field.

4. Space Charge (Interfacial) Polarization

- Caused by accumulation of charges at interfaces, grain
 boundaries, or defects inside the material.
- Happens mainly in heterogeneous materials or at low frequencies.
- Charges get trapped and cause localized polarization.
- Takes longer time to build up compared to other types.

43. EXPRESSIONS FOR IONIC AND ELECTRONIC

POLARIZABILITY

1. Electronic Polarizability

- Electronic polarizability is due to the displacement of the electron cloud relative to the nucleus in an atom under an electric field.
- When an electric field EE is applied, the electron cloud shifts by a small distance xx, creating an induced dipole moment pp:

$$p = q \cdot x$$

where:

- p = induced dipole moment (C·m)
- q = charge of the electron cloud displaced (magnitude of charge)
- x = displacement of electron cloud relative to nucleus

Frequency and Temperature Dependence of Dielectric

Polarization

2. Ionic Polarizability α_{ion}

Definition:

lonic polarizability occurs in **ionic crystals** when an applied electric field causes **positive and negative ions** to be displaced **in opposite directions**, creating an induced dipole.

• The displacement of ions leads to an induced dipole moment p.

Frequency Dependence

Dielectric polarization depends strongly on the **frequency of the applied electric field** because different types of
polarization respond differently to changing fields:

1. Electronic and Ionic Polarization:

- These polarizations involve the displacement of electrons and ions, which are very fast processes.
- They can follow high-frequency fields, including
 visible light frequencies (around 101410^{14} Hz).
- So, electronic and ionic polarizations remain
 effective even at very high frequencies.

2. Orientation (Dipolar) Polarization:

- Dipolar molecules rotate to align with the field,
 which is slower.
- At low frequencies (up to around 10610^{6} Hz),
 dipoles can follow the field and contribute to

polarization.

 At high frequencies, dipoles cannot reorient fast enough and their contribution decreases, causing a drop in the dielectric constant.

3. Space Charge Polarization:

- Involves migration and accumulation of charges,
 which is very slow.
- Effective only at very low frequencies (below 10310
 ^{3} Hz).
- At higher frequencies, charges cannot move fast enough, so this polarization disappears.

Temperature Dependence

Temperature affects the **ability of dipoles to orient** and thus influences polarization:

1. Electronic and Ionic Polarization:

 These are less affected by temperature because displacement of electrons and ions depends mostly on the bond strength, which is not significantly changed by normal temperature variations.

2. Orientation (Dipolar) Polarization:

- Strongly temperature-dependent.
- 。 As temperature **increases**, thermal agitation

disrupts the alignment of permanent dipoles, reducing polarization.

 At low temperatures, dipoles align better, increasing polarization.

3. Space Charge Polarization:

- Also temperature-dependent because higher temperatures help charges move more easily, enhancing space charge polarization.
- However, at very high temperatures, increased
 thermal vibrations can reduce effective polarization
 by causing more random motion.

Practical Impact:

- Dielectric constant usually decreases with frequency,
 especially due to loss of dipolar and space charge
 contributions at high frequencies.
- Dielectric constant generally decreases with temperature for materials where orientation polarization dominates.

44. FERROELECTRICITY

What is Ferroelectricity?

 Ferroelectricity is a property of certain materials that have a spontaneous electric polarization (permanent electric dipole moment) which can be **reversed by**applying an external electric field.

- These materials behave like tiny electric dipoles aligned in domains, similar to how ferromagnets have magnetic domains.
- The direction of polarization can be switched by an electric field, making them useful in memory devices.

45. BARIUM TITANATE (BaTiO₃)

What is Barium Titanate?

- Barium Titanate is a well-known ferroelectric ceramic material.
- It has a perovskite crystal structure and shows strong ferroelectric properties below its Curie temperature (~ 120°C).
- Above the Curie temperature, it behaves like a normal dielectric (paraelectric).
- Barium Titanate exhibits high dielectric constant and good piezoelectric and pyroelectric properties.

Key Properties:

- Spontaneous polarization that can be switched by an external electric field.
- High dielectric constant makes it suitable for capacitors.

Exhibits phase transition from cubic (non-ferroelectric)
 to tetragonal (ferroelectric) structure.

46. APPLICATIONS OF FERROELECTRICS

1. Non-volatile Memory Devices

 Used in Ferroelectric RAM (FeRAM), which stores data by switching polarization states.

2. Capacitors

 High dielectric constant materials like BaTiO₃ are used to make high-performance capacitors.

3. Piezoelectric Devices

 Ferroelectrics convert mechanical stress to electrical signals and vice versa, used in sensors, actuators, and transducers.

4. Electro-optic Devices

 Used in modulators and switches for controlling light in optical communication.

5. Pyroelectric Sensors

 Detect changes in temperature by generating electric charge.

